

FILE COPY

Mr. Bob Stone Environmental Health Specialist Humboldt County Division of Environmental Health 100 H Street, Suite 100 Eureka, CA, 95501 November 8, 2005

Re: Fourth Quarter 2005 Groundwater Monitoring Report

Indianola Market 7769 Myrtle Avenue Eureka, CA Project No. NC-18 LOP # 12690

Dear Mr. Stone,

This report presents the results of the Fourth Quarter 2005 groundwater monitoring activities at 7769 Myrtle, Eureka, Humboldt County, California (site) (Figure 1), and was prepared for Mrs. Beverly Alto by Blue Rock Environmental, Inc. (Blue Rock).

Background

Site Description

The subject site is located near the northern boundary of the City of Eureka in Humboldt County approximately 800 feet north of the intersection of Indianola Cutoff and Myrtle Avenue in a combined commercial/ residential area of Eureka at approximately 25 feet above mean sea level (Figure 1). The site is located in the southern portion of a 5-acre parcel of land containing two residences, the Indianola Market, and The Alto Brothers Trucking equipment maintenance/ storage yard and office.

Site History

The Indianola Market contained two 550-gallon capacity gasoline underground storage tanks (UST) and one 550-gallon capacity diesel UST (Figure 2). The UST system, consisting of one 550-gallon gasoline and one 550-gallon diesel UST was constructed in 1953. At some time during the 1960's, the diesel UST was abandoned in-place and an additional 550-gallon gasoline UST was installed. The UST system was operated until September 1998, when the three USTs were closed by removal. The UST system was replaced by a single 1,000-gallon capacity aboveground gasoline storage tank, which is currently located on a concrete pad directly above the former UST excavation.

In September 1998, Christens NCI, Inc. (NCI), of Eureka, California, decommissioned and removed three USTs from the site along with associated piping, dispensers, and the dispenser island. This work was observed by the HCDEH and at the direction of the HCDEH inspector, approximately 50 to 75 cubic yards of obviously impacted soil was excavated and stockpiled at

the site pending disposal. During UST removal activities, petroleum hydrocarbon stained soils were observed and groundwater entering the excavation exhibited a sheen accompanied by hydrocarbon odors. This confirmed that an unauthorized release of petroleum had occurred. On September 29, 1998, an unauthorized release report was filed by Mr. Jerry Avila, operator of the UST system at that time. After completion of UST removal and soil excavation operations, NCI personnel collected confirmation soil and groundwater samples from the excavation at locations specified by the HCDEH. Results of soil and groundwater sampling confirmed that an unauthorized release of petroleum had occurred.

Site Investigation and Corrective Action History

On October 1, 2001, Clearwater Group (Clearwater) supervised Fisch Environmental of Valley Springs, California drill five direct push borings to preliminarily investigate the onsite extent of soil and groundwater contamination resulting from the confirmed release from the former UST system. Results for this investigation and the locations of the proposed monitoring wells were presented in Clearwater's *Preliminary Subsurface Investigation Report* dated October 22, 2001. In a letter dated October 26, 2001, the HCDEH concurred with Clearwater recommendations for monitoring well locations.

On November 7, 2001, Clearwater supervised Mitchell Drilling Environmental (MDE) in installing three monitoring wells: MW-1, MW-2 and MW-3 (Figure 2). These monitoring wells were placed in locations to assess the sorbed and dissolved-phase hydrocarbon contamination associated with the UST release. Results of this investigation are presented in Clearwater's Monitoring Well Installation and Fourth Quarter 2001 Groundwater Monitoring Report dated December 13, 2001.

On October 10, 2002, Clearwater supervised MDE in drilling two monitoring wells: MW-4 and MW-5 (Figure 2). These monitoring wells were placed in locations to further assess the residual sorbed and dissolved-phase gasoline and diesel range hydrocarbon contamination associated with the UST release. Data collected during this phase of investigation are presented in Clearwater's Monitoring Well Installation and Fourth Quarter 2002 Groundwater Monitoring Report / Sensitive Receptor Survey dated November 18, 2002.

On June 10, 2003, Clearwater supervised MDE in installing four soil borings: B-6 to B-9 (Figure 2). These borings were placed in locations to further assess the residual sorbed and dissolved-phase gasoline and diesel range hydrocarbon contamination associated with the UST release. Data collected during this phase of investigation are presented in Clearwater's *Additional Investigation Report* dated July 8, 2003.

Per HCDEH request in a letter dated July 11, 2003, Clearwater prepared and submitted a Corrective Action Plan (CAP) dated February 18, 2004. The HCDEH responded to the CAP submitted by Clearwater in a letter dated April 23, 2004 requesting corrections to the existing CAP and a response to questions contained in that letter. In May 2004, Blue Rock was retained by Mr. and Mrs. Alto to continue site work. Blue Rock subsequently submitted a brief letter

report dated June 15, 2004 in response to HCDEH requests. Groundwater monitoring continued.

Field and Laboratory Activities

Groundwater Monitoring Activities

On October 11, 2005, five wells (MW-1 through MW-5) were gauged and sampled. Prior to sampling, an electronic water level indicator was used to gauge depth to water in each well, accurate to within ±0.01-foot. All wells were checked for the presence of light non-aqueous phase liquid (LNAPL) petroleum prior to purging. No measurable thicknesses of LNAPL were observed on groundwater in any of the wells. In addition, a water sample from the domestic well located at 7711 Myrtle Ave. was collected and analyzed for the analytical suite below.

In preparation for sampling, the monitoring wells were purged of groundwater until sampling parameters (temperature, pH, and conductivity) stabilized. Following recovery of water levels to approximately 80% of their static levels in the other wells, groundwater samples were collected from the wells using disposable polyethylene bailers and transferred to laboratory supplied containers. The water sample from 7711 Myrtle Ave. was collected from a tap located on the property. Sample containers were labeled, documented on a chain-of-custody form, and placed on ice in a cooler for transport to the project laboratory.

Purging instruments were cleaned between use by an Alconox® wash followed by double rinse in clean tap water to prevent cross-contamination. Purge and rinseate water was stored on-site in labeled 55-gallon drums pending future removal and disposal.

Groundwater monitoring and well purging information is presented on Gauge Data/Purge Calculations and Purge Data sheets (attached).

Groundwater Sample Analyses

Groundwater samples were analyzed by Kiff Analytical (Kiff), a DHS-certified laboratory, located in Davis, California, for the following analytes:

- TPHd by EPA Method 8015 (MW-2 & MW-5)
- TPHg, BTEX and MTBE by EPA Method 8260B

Groundwater Monitoring Results

Groundwater Flow Direction and Gradient

Static groundwater in the wells was present beneath the site at depths ranging from approximately 3.69 (MW-3) to 5.72 (MW-5) feet bgs. Gauging data, combined with well elevation data, were used to calculate groundwater elevations, and to generate a groundwater elevation and gradient map. The groundwater flow direction was primarily calculated to be

toward the southwest at a gradient of approximately 0.04 ft/ft (Figure 3). The groundwater gradient and flow direction is consistent with previous measurements.

Groundwater Contaminant Analytical Results

LNAPL: None

TPHg concentration: $<50 \mu g/L \text{ (MW-1, 3,4 & 5) to } 370 \mu g/L \text{ (MW-2)}$

TPHd concentration: $<50 \mu g/L (MW-5) \text{ to } < 80 \mu g/L (MW-2)$ MTBE concentration: $<0.71 \mu g/L (MW-1) \text{ to } 370 \mu g/L (MW-2)$

Benzene concentration: <0.5 μg/L (MW-1, 2, 3, 4, & 5)

Groundwater sample analytical results are shown graphically on Figures 4 and 5. Cumulative groundwater sample analytical results are summarized in Table 1. Copies of the laboratory report and chain-of-custody form are attached.

Remarks

Groundwater sample analytical results fall within historical concentration range for the site. The plume of dissolved-phase hydrocarbons appears stable with no significant migration. The water sample collected from 7711 Myrtle Ave. was free of detectable analytes.

First Order Decay Rates Fourth Quarter 2005

This report contains first order decay rate graphs (Charts 1 to 3). Concentrations of dissolved-phase MTBE in MW-2 are declining at a rate of 0.0011 day⁻¹. Based on current analytical data, concentrations of TPHg in MW-2 and MTBE in MW-5 appear to be stable and/or decreasing over the last four quarters.

Depth to Water vs. Concentrations of TPHg and MTBE in MW-2

Depth to water data and TPHg/MTBE concentrations show a general inverse relationship (Charts 4 and 5). This likely results from the scenario of rising groundwater coming into contact with sorbed-phase contaminants, which then partition to the dissolved-phase and increase groundwater contaminant concentrations. As the groundwater drops, and falls out of contact with more shallow soil contamination, the dissolved-phase contaminants decline.

Dissolved-Phase Mass Calculations Fourth Quarter 2003 to Fourth Quarter 2005

Calculations of residual dissolved-phase masses for MTBE over time and show declining trends. Based on the data presented (Charts 6 and 7), the dissolved-phase mass of residual fuel hydrocarbons associated with the subject release is stable and/or decreasing. Mass calculations for individual quarters and associated graphs are attached.

Project Status and Recommendations

- The site is currently being monitored on a quarterly basis per the HCDEH directives. The
 next quarterly sampling event is scheduled for January 2006. Per the HCDEH letter dated
 July 26, 2004 the current analytical suite is as follows: TPHg, BTEX and MTBE by EPA
 Method 8260B (all wells) and TPHd by EPA Method 8015M with silica gel cleanup (MW-2
 & MW-5).
- Groundwater analytical data collected from MW-2 and MW-5 over the last four quarters
 indicate that concentrations of dissolved-phase TPHg and MTBE at these monitoring points
 are decreasing and/or stable. Because of these observed declines in concentrations of target
 analytes, continued groundwater monitoring has indicated that a more cost effective, less
 invasive remedial alternative may be more appropriate than the previously proposed
 excavation. Blue Rock recommends that additional more cost effective / less invasive remedial
 alternatives be evaluated and compared to those previously submitted.

JONAL

Certification

This report was prepared under the supervision of a California Professional Geologist at Blue Rock. All statements, conclusions, and recommendations are based upon published results from past consultants, field observations by Blue Rock, and analyses performed by a state-certified laboratory as they relate to the time, location, and depth of points sampled by Blue Rock or others. Interpretation of data, including spatial distribution and temporal trends, are based on commonly used geologic and scientific principles. It is possible that interpretations, conclusions, and recommendations presented in this report may change, as additional data become available and/or regulations change.

Information and interpretation presented herein are for the sole use of the client and regulating agency. The information and interpretation contained in this document should not be relied upon by a third party.

The service performed by Blue Rock has been conducted in a manner consistent with the level of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions in the area of the site. No other warranty, expressed or implied, is made.

If you have any questions regarding this project, please contact us at (707) 441-1934.

Sincerely,

Blue Rock Environmental, Inc.

Prepared by:

Andrew LoCicero Project Scientist Reviewed by:

Brian Gwinn, PG Principal Geologist

Attachments

Table 1	Groundwater Elevations and Analytical Results
Table 2	Well Construction Details
Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Groundwater Elevation and Gradient 10/11/05
Figure 4	Dissolved-Phase TPHg Distribution 10/11/05
Figure 5	Dissolved-phase MTBE Distribution 10/11/05
Chart 1	Concentrations of Dissolved-Phase MTBE vs. Time in MW-2
Chart 2	Concentrations of Dissolved-Phase TPHg vs. Time in MW-2
Chart 3	Concentrations of Dissolved-Phase MTBE vs. Time in MW-5
Chart 4	Depth to Water Vs. TPHg Concentrations for MW-2
Chart 5	Depth to Water Vs. TPHg Concentrations for MW-5
Chart 6	Dissolved-Phase MTBE Mass vs. Time
Chart 7	Dissolved-Phase TPHg Mass vs. Time
	ase Mass Calculations - Fourth Quarter 2003 to Fourth Quarter 2005
	uge/Purge Calculations and Well Purging Data field sheets
Laboratory A	nalytical Report and Chain-of-Custody Form

CC: Beverly Alto

7803 Myrtle Avenue Eureka, CA 95503

Jerry Avila 7769 Myrtle Avenue Eureka, CA 95503

Table 1
GROUNDWATER ELEVATIONS AND ANALYTICAL RESULTS

Indianola Market 7769 Myrtle Avenue Eureka, California Project No. NC-18

Well	Sampling	TOC	DTW	GWE	TPHg	TPHd	Benzene		Ethylbenzene		MTBE	DIPE	TAME	ETBE	TBA	Ethanol	Methanol
No.	Date	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1	11/20/01	99.99	5.15	94.84	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<5	<5	<50
	2/2/02	99.99	2.58	97.41	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<5	<50
Screen	5/2/02	99.99	2.67	97.32	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<5	<5	<50
3'-20'	8/2/02	99.99	5.07	94.92	<50	<50	<0.5	<0.5	<0.5	<0.5	0.99	<0.5	<0.5	<0.5	<5	_	
3-20	(10/15/02)	32.22	6.77	25.45	<50	<50	<0.5	<0.5	<0.5	<0.5	0.57	<0.5	<0.5	< 0.5	<5		
	1/13/03	32.22	2.03	30.19	<50	<50	<0.5	<0.5	<0.5	<0.5	0.51	<0.5	<0.5	<0.5	<5	_	
	4/1/03	32.22	1.33	30.89	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<5		
	7/10/03	32.22	4.33	27.89	<50	66	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	-	
	10/2/03	32.22	7.07	25.15	<50	110	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	-	_
	1/5/04	32.22	3.38	28.84	<50	58	<0.5	<0.5	<0.5	<0.5	2.9	<0.5	<0.5	<0.5	<5		
	4/6/04	32.22	2.85	29.37	<50	81	<0.5	<0.5	<0.5	<0.5	3.2	<0.5	<0.5	<0.5	<5	-	
	7/1/04	32.22	4.92	27.30	<50	<50	<0.5	<0.5	<0.5	<0.5	3.6	<0.5	<0.5	<0.5	<5		_
	10/1/04	32.22	7.04	25.18	<50		<0.5	<0.5	<0.5	<0.5	1.5		-		-	_	_
	1/4/05	32.22	2.05	30.17	<50	_	<0.5	<0.5	<0.5	<0.5	1.6	-	_				
	4/18/05	32.22	2.40	29.82	<50		<0.5	<0.5	<0.5	<0.5	1.1	-	-		-		_
	7/1/05	32.22	3.15	29.07	<50		<0.5	<0.5	<0.5	<0.5	0.76	-					_
	10/11/05	32.22	5.51	26.71	<50		<0.5	<0.5	<0.5	<0.5	0.71	-	_	_		-	_
	10/11/03	34.66	3.31	20.71	30	-	-0.3	~0.5	~0.5	-0.5	0.71						
MW-2	11/20/01	99.15	4.92	94.23	300	<200	<2	<2	2	<2	1,100	<2	5.3	4	35	<20	<200
	2/2/02	99.15	2.31	96.84	1,400	<500	<5	<5	<5	<5	1,900	<5	5.5	5.4	63	<50	<500
Screen	5/2/02	99.15	2.47	96.68	1,000	<350	3.1	<2.5	<2.5	<2.5	1,200	<2.5	5.8	5.5	33		-
3'-20'	8/2/02	99.15	4.77	94.38	650	<400	<5	<5	<5	<5	2,300	<5	12	6.1	71	_	_
3-20	(10/15/02)	31.33	6.49	24.84	73	<100	<0.5	<0.5	<0.5	<0.5	310	<0.5	1.9	0.84	7.7		-
	1/13/03	31.33	1.97	29.36	1,500	<800	2.6	<0.2	<0.2	3.2	1,300	<0.2	7.3	4.6	41	-	-
	4/1/03	31.33	2.07	29.26	1,000	<1,100	<2	<2	<2	2.8	940	<2	5.4	3.4	251	-	
	7/10/03	31.33	4.09	27.24	1,100	<600	<2	<2	<2	<2	1,000	<2	5.8	4	25 1	-	
	10/2/03	31.33	6.80	24.53	1,000	<800	<2.5	<2.5	<2.5	<2.5	1,100	<2.5	7.7	5	32 1		
	1/5/04	31.33	2.76	28.57	1,300	<1,000	<1.5	<1.5	<1.5	<1.5	740	<1.5	<1.5	4	22	_	
	4/6/04	31.33	2.58	28.75	280	120	<0.5	<0.5	<0.5	<0.5	120	<0.5	0.72	0.82	<5		
	7/1/04	31.33	4.56	26.77	510	690	<1.5	<1.5	<1.5	<1.5	800	<1.5	7.10	2.4	27		
	10/1/04	31.33	6.71	24.62	<50	<50 ²	<0.5	<0.5	<0.5	< 0.5	130				-		
	1/4/05	31.33	1.85	29.48	580	<80 ²	<1.5	<1.5	<1.5	<1.5	580						
	4/18/05	31.33	2.08	29.25	620	<500	<1.0	<1.0	<1.0	<1.0	510						
	7/1/05	31.33	2.57	28.76	420	<400	<0.5	<0.5	<0.5	<0.5	260	-					
	10/11/05	31.33	5.21	26.12	370	<80	<0.5	<0.5	<0.5	<0.5	370					**	
	1011100	01.00		40.14		-00	-0.0	-010	-0.0	-0.0	0.10						
MW-3	11/20/01	99.30	3.36	95.94	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	100	< 0.5	0.85	<0.5	8.1	<5	<50
	2/2/02	99.30	1.56	97.74	<50	<50	<0.5	< 0.5	<0.5	< 0.5	2.4	<0.5	< 0.5	< 0.5	<5	<5	<50
Screen	5/2/02	99.30	1.67	97.63	<50	<50	< 0.5	<0.5	<0.5	< 0.5	6	< 0.5	<0.5	< 0.5	<5		
3'-20'	8/2/02	99.30	3.37	95.93	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	89	< 0.5	0.65	< 0.5	5.3		
	(10/15/02)	31.47	5.06	26.41	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	94	< 0.5	0.79	< 0.5	<5	_	
	1/13/03	31.47	1.44	30.03	<50	56	<0.5	< 0.5		< 0.5	340	<0.5	2.1	< 0.5	27		
	1/13/03	31.47	1.44	30.03	<50	56	<0.5	<0.5	Page 15 of 3	<0.5	340	<0.5	2.1	<0.5	27	-	-

Table 1 GROUNDWATER ELEVATIONS AND ANALYTICAL RESULTS

Indianola Market 7769 Myrtle Avenue Eureka, California Project No. NC-18

Well	Sampling	TOC	DTW	GWE	TPHg	TPHd	Benzene			Xylenes	MTBE	DIPE	TAME	ETBE	TBA	Ethanol	Methanol
No.	Date	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-3	4/1/03	31.47	1.37	30.10	51	<50	<0.5	< 0.5	<0.5	<0.5	280	<0.5	2	< 0.5	18	-	-
	7/10/03	31.47	2.80	28.67	<50	89	<0.5	<0.5	<0.5	< 0.5	89	<0.5	0.84	< 0.5	6.4		
Screen	10/2/03	31.47	5.41	26.06	<50	150	< 0.5	<0.5	<0.5	<0.5	110	<0.5	0.71	< 0.5	<5	-	
3'-20'	1/5/04	31.47	2.46	29.01	<50	<50	<0.5	< 0.5	<0.5	<0.5	11	< 0.5	<0.5	< 0.5	<5	-	
3-20	4/6/04	31.47	1.71	29.76	<50	<50	<0.5	<0.5	<0.5	<0.5	0.73	<0.5	<0.5	<0.5	<5	-	
	7/1/04	31.47	3.16	28.31	<50	<50	<0.5	<0.5	<0.5	<0.5	80	<0.5	<0.5	<0.5	<5	-	
	10/1/04	31.47	5.26	26.21	<50	-	<0.5	<0.5	<0.5	<0.5	61		-		_	-	
	1/4/05	31.47	1.43	30.04	<50	_	<0.5	<0.5	<0.5	<0.5	9	_	_			-	
	4/18/05	31.47	1.48	29.99	<50	_	<0.5	<0.5	<0.5	<0.5	2.2				_		
	7/1/05	31.47	1.01	30.46	<50		<0.5	<0.5	<0.5	<0.5	1.4	_					
	10/11/05	31.47	3.88	27.59	<50	-	<0.5	<0.5	<0.5	<0.5	18	_	-			-	
	777																
MW-4	10/15/02	32.74	4.99	27.75	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	4.1	< 0.5	< 0.5	< 0.5	<5		
	1/13/03	32.74	1.41	31.33	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	0.92	< 0.5	< 0.5	< 0.5	<5		
Screen	4/1/03	32.74	1.45	31.29	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	0.70	< 0.5	< 0.5	< 0.5	<5		
3'-20'	7/10/03	32.74	2.82	29.92	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	7.9	< 0.5	< 0.5	< 0.5	<5		
	10/2/03	32.74	5.32	27.42	<50	99	< 0.5	< 0.5	< 0.5	< 0.5	6.9	< 0.5	< 0.5	< 0.5	<5		
	1/5/04	32.74	2.60	30.14	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<5		
	4/6/04	32.74	1.88	30.86	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<5		
	7/1/04	32.74	3.19	29.55	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	17	< 0.5	< 0.5	< 0.5	<5		-
	10/1/04	32.74	5.16	27.58	<50		< 0.5	< 0.5	< 0.5	< 0.5	6.3						
	1/4/05	32.74	1.52	31.22	<50		< 0.5	< 0.5	< 0.5	< 0.5	0.68						
	4/18/05	32.74	1.66	31.08	<50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	**					
	7/1/05	32.74	1.98	30.76	<50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				**		
	10/11/05	32.74	3.69	29.05	<50	-	<0.5	< 0.5	<0.5	< 0.5	3.4						-
													-0.5	-0.5			
MW-5	10/15/02	29.71	7.11	22.60	<50	<50	< 0.5	<0.5	<0.5	<0.5	32	<0.5	<0.5	<0.5	<5		
	1/13/03	29.71	0.66	29.05	<50	<50	<0.5	<0.5	<0.5	<0.5	31	<0.5	<0.5	<0.5	<5		
Screen	4/1/03	29.71	1.75	27.96	<50	<50	<0.5	<0.5	<0.5	<0.5	35	<0.5	<0.5	<0.5	<5	-	
5'-20'	7/10/03	29.71	4.60	25.11	<50	<50	<0.5	<0.5	<0.5	<0.5	20	<0.5	<0.5	<0.5	<5	-	
	10/2/03	29.71	7.45	22.26	<50	<50	< 0.5	<0.5	<0.5	<0.5	9	<0.5	<0.5	<0.5	<5		
	1/5/04	29.71	2.31	27.40	<50	85	< 0.5	<0.5	<0.5	<0.5	29	<0.5	< 0.5	<0.5	<5		**
	4/6/04	29.71	2.53	27.18	<50	68	< 0.5	< 0.5	<0.5	<0.5	38	<0.5	<0.5	<0.5	<5		
	7/1/04	29.71	4.95	24.76	86	86	<0.5	< 0.5	<0.5	<0.5	170	< 0.5	1.4	0.97	17	-	
	10/1/04	29.71	7.26	22.45	<50	<50 ²	< 0.5	<0.5	<0.5	<0.5	2				-	-	
	1/4/05	29.71	0.78	28.93	<50	<50 ²	< 0.5	<0.5	<0.5	< 0.5	5.3					-	-
	4/18/05	29.71	2.02	27.69	<50	<50	<0.5	< 0.5	<0.5	< 0.5	8.2	**			-		
	7/1/05	29.71	3.27	26.44	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	92		**	***			
	10/11/05	29.71	5.72	23.99	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	5.6						-

Table 1 GROUNDWATER ELEVATIONS AND ANALYTICAL RESULTS

Indianola Market 7769 Myrtle Avenue Eureka, California Project No. NC-18

Well No.	Sampling Date	TOC (feet)	DTW (feet)	GWE (feet)	TPHg (µg/L)	TPHd (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	MTBE (μg/L)	DIPE (μg/L)	TAME (µg/L)	ETBE (μg/L)	TBA (μg/L)	Ethanol (µg/L)	Methanol (µg/L)
Dom - 1	4/1/03	(Domestic we	ill located at 77	'11 Myrtle Ave.)	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	-	
	1/4/05	-			<50	<50	< 0.5	< 0.5	< 0.5	<0.5	< 0.5						
	10/11/05				<50	<50	<0.5	<0.5	<0.5	< 0.5	<0.5	-	-			-	-
				MCL			1	150	300	1,750	5						
			Taste & o	dor threshold	5	100		42	29	17	5						
		NO	CRWQCB	cleanup goals	<50	100	0.50	42	29	17	5						

Notes:

TOC: Top of casing referenced to mean sea level (4.33 NAVD 88 (NGS LV 0638) SS rod E1401 1988

Sample date in parentheses indates new wellhead survey per Geotracker

DTW: Depth to water as referenced to benchmark.

GWE: Ground water elevation as referenced to benchmark

µg/L=micrograms per liter

" ... ": Not analyzed, available, or applicable

MCL: Maximum contaminant level, an enforceable drinking water standard

Taste & odor threshold: A drinking water standard

1. Tert Butanol results may be biased high (see case narative in laboratory report)

2. TPHd analysis performed using silica gel cleanup

TPHg: Total Petroleum Hydrocarbons as Gasoline by Method 5030/8260B

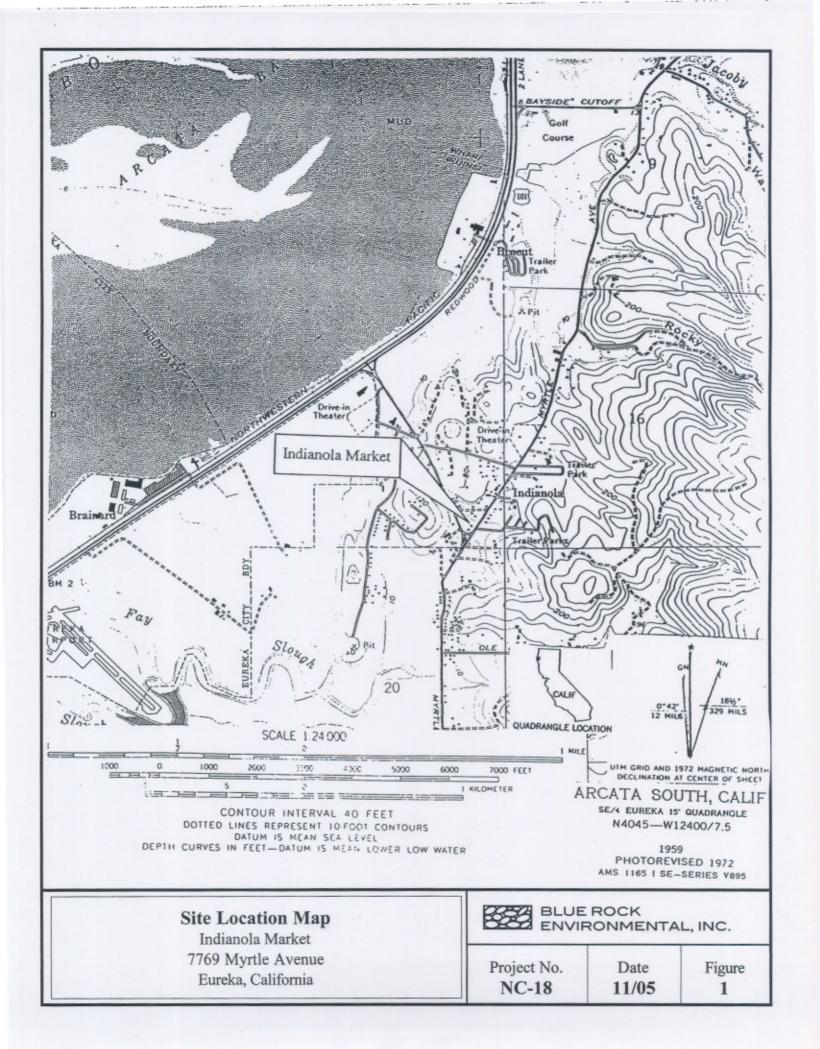
TPHd: Total Petroleum Hydrocarbons as Diesel by Method 3510/8015M

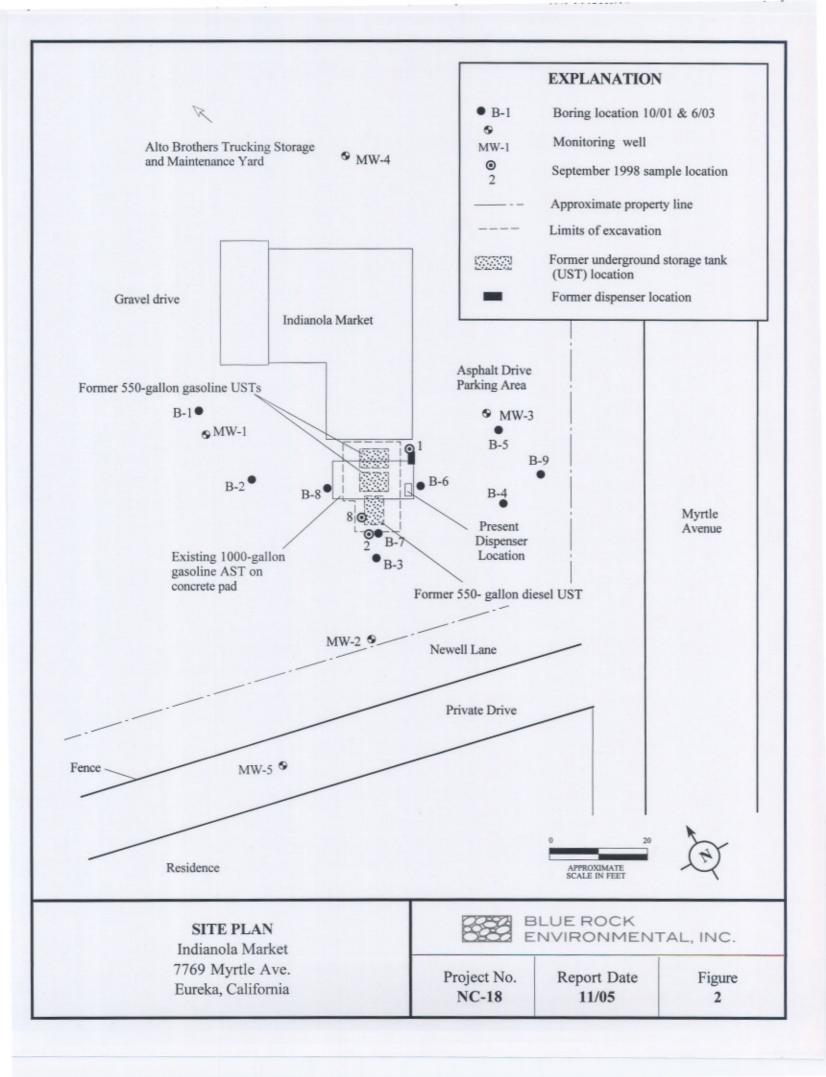
MTBE: Methyl Tertiary Butyl Ether by Method 8260B

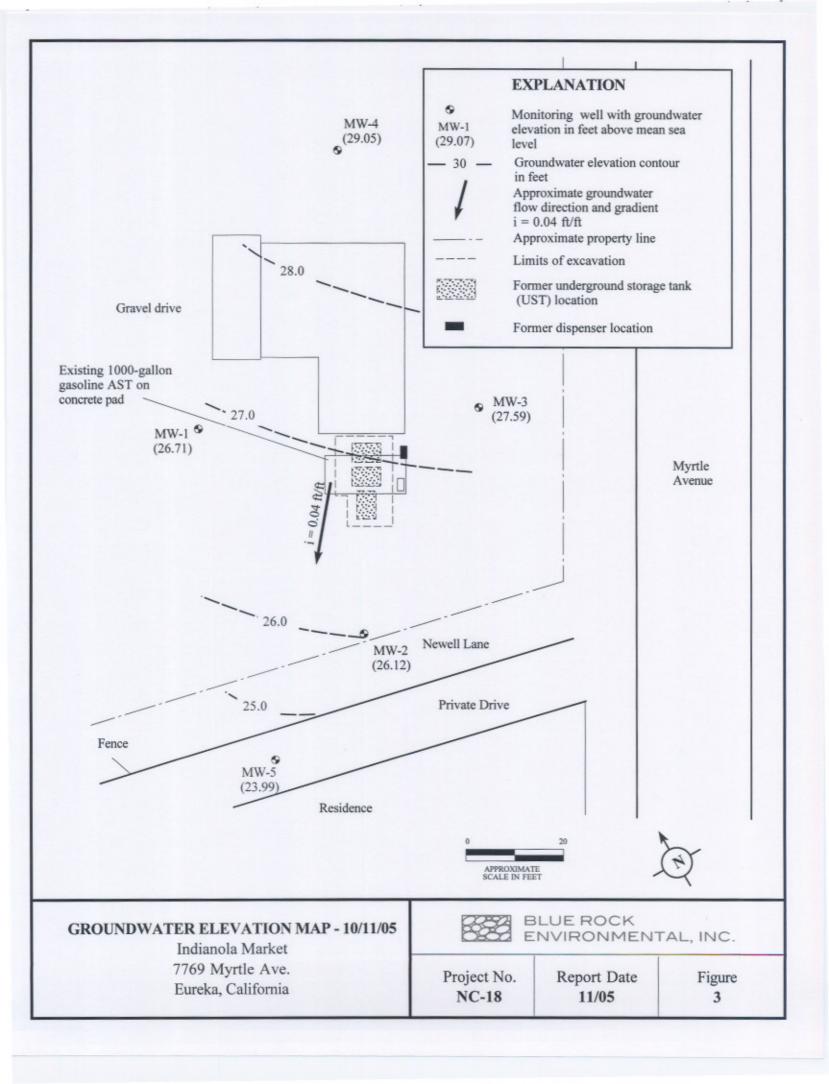
DIPE: Di-Isopropyl Ether by Method 8260B

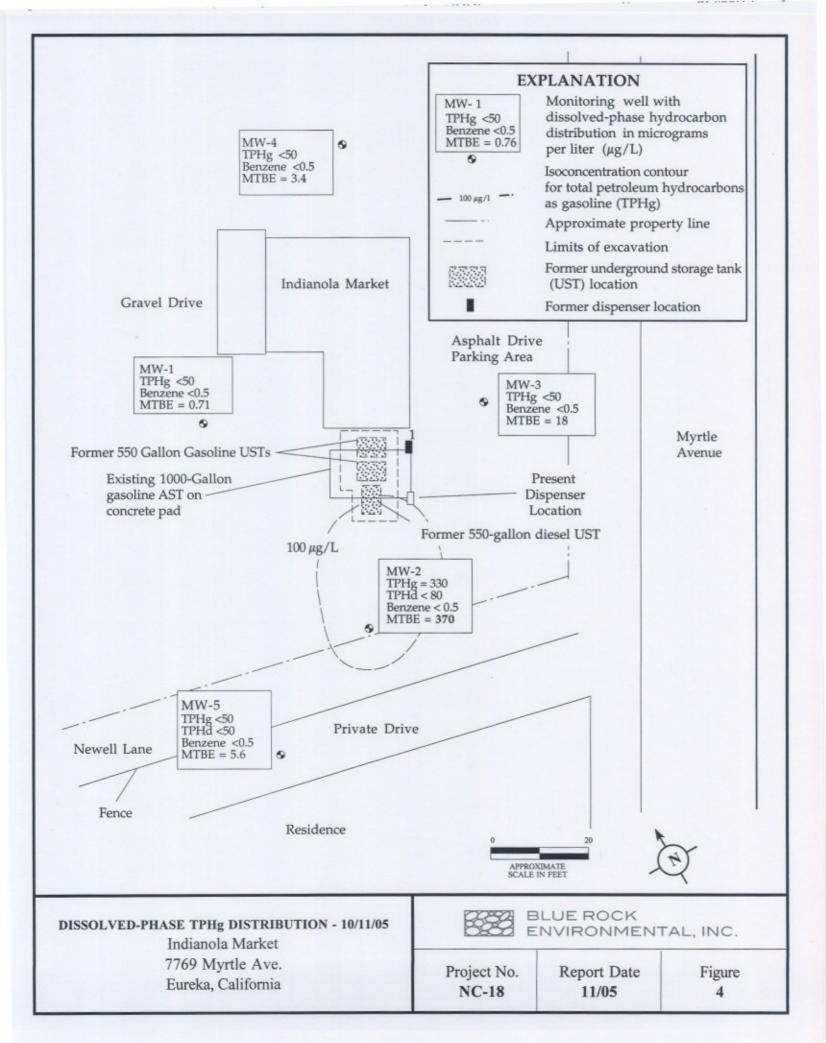
TAME: Tertiary Amyl Methyl Ether by method 8260B

ETBE: Ethyl Tertiary Butyl Ether by Method 8260B


TBA: Tertiary Butyl Alcohol by Method 8260B


NCWQCB: North Coast Water Quality Control Board


Table 2
Well Construction Details
Indianola Market


7769 Myrtle Avenue Eureka, CA Project # NC-18

Well Identification	Date Intstalled	Intstalled by	Casing Diameter	Total Depth	Blank Interval	Screened Interval	Slot Size	Filter Pack	Bentonite Seal	Cement	
			(inches)	(feet)	(feet)	(feet)	(inches)	(feet)	(feet)	(feet)	
MW-1	10/10/01	Clearwater	2	20	0-3	3-20	0.02	2-20	1-2	0-1	
MW-2	10/10/01	Clearwater	2	20	0-3	3-20	0.02	2-20	1-2	0-1	
MW-3	10/10/01	Clearwater	2	20	0-3	3-20	0.02	2-20	1-2	0-1	
MW-4	10/7/02	Clearwater	2	20	0-3	3-20	0.02	2-20	1-2	0-1	
MW-5	10/7/02	Clearwater	2	20	0-3	5-20	0.02	2-20	1-2	0-1	

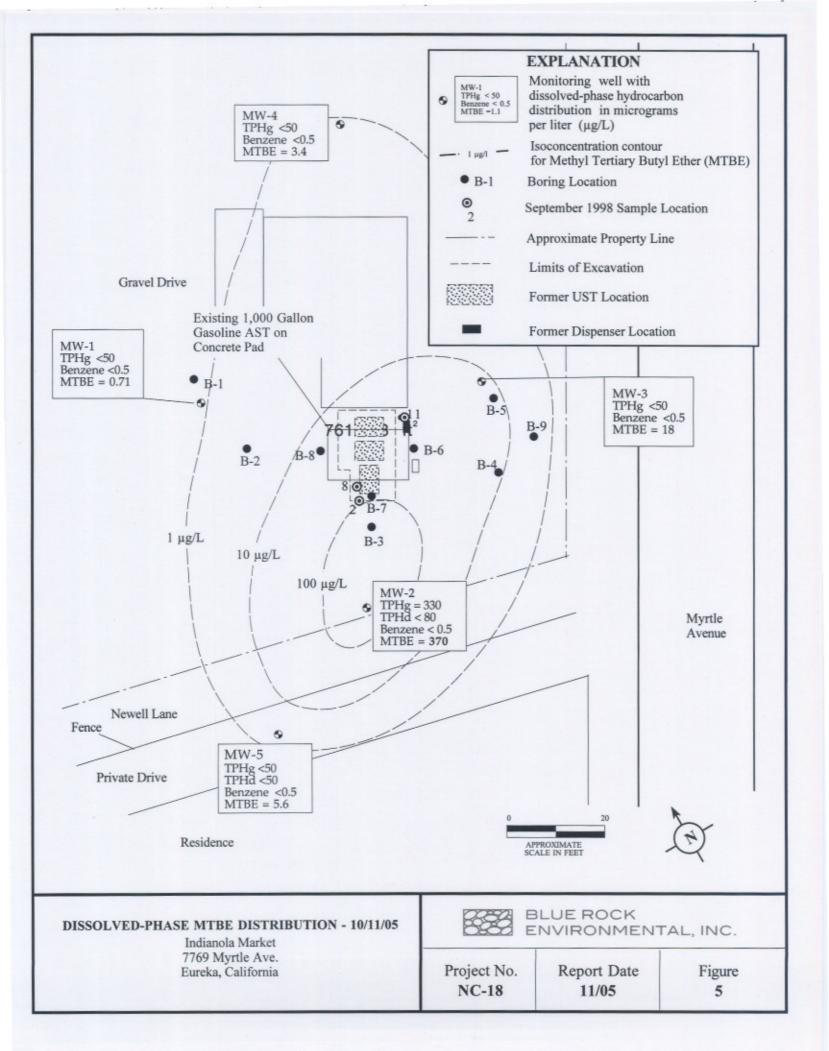


Chart 1
Indianola Market
7769 Myrtle Avenue
Eureka, California
Project No. NC-18

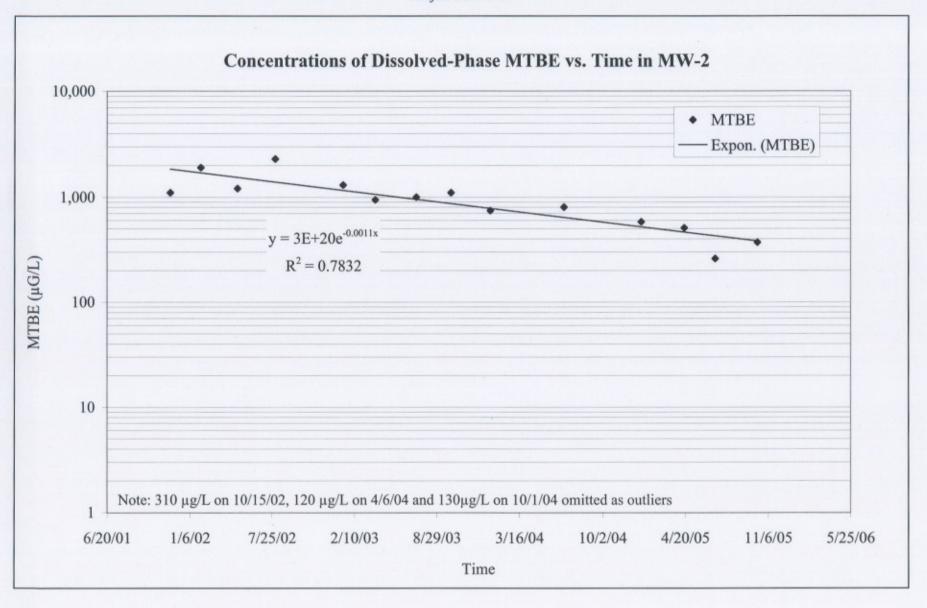


Chart 2 Indianola Market 7769 Myrtle Avenue Eureka, California Project No. NC-18

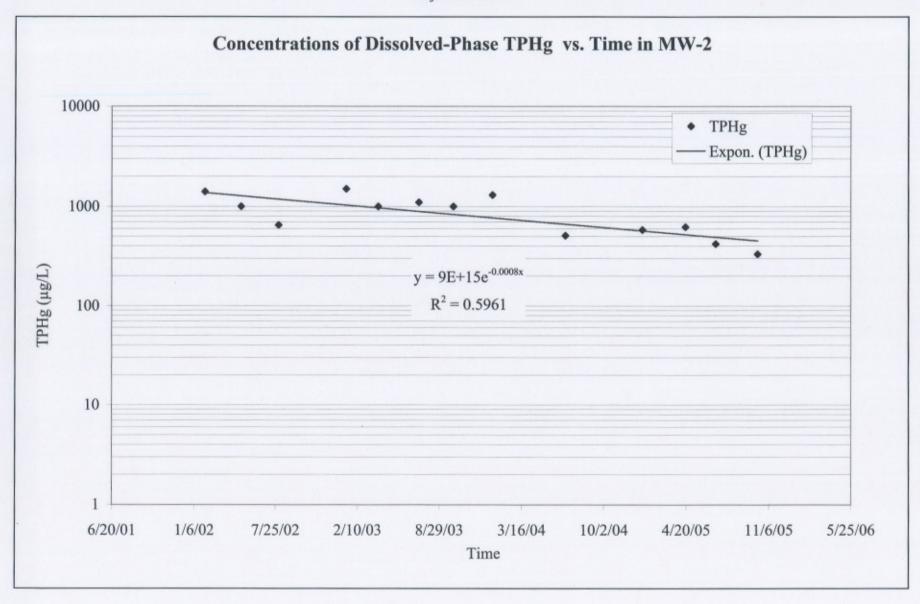


Chart 3 Indianola Market 7769 Myrtle Avenue Eureka, California Project No. NC-18

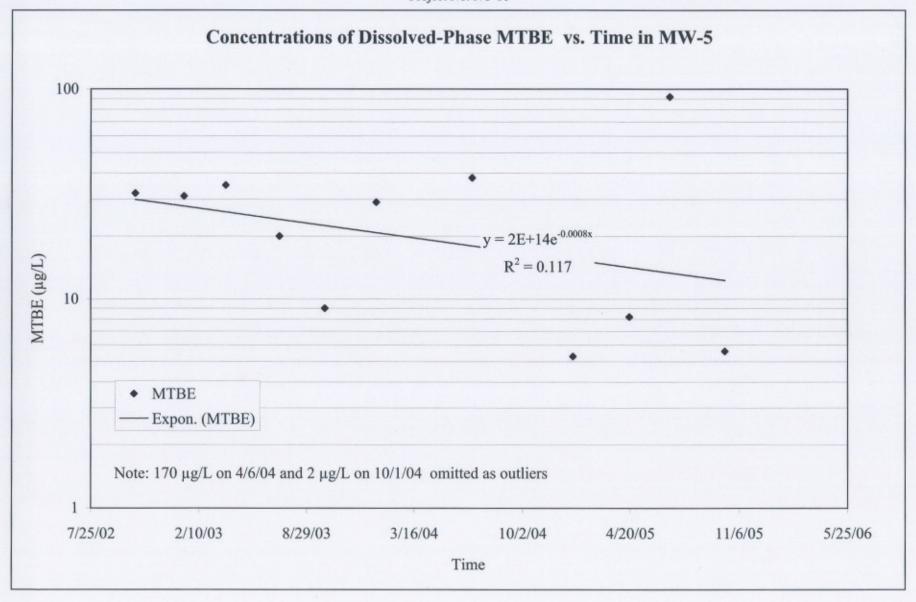


Chart 4 Indianola Market 7769 Myrtle Avenue Eureka, California Project No. NC-18

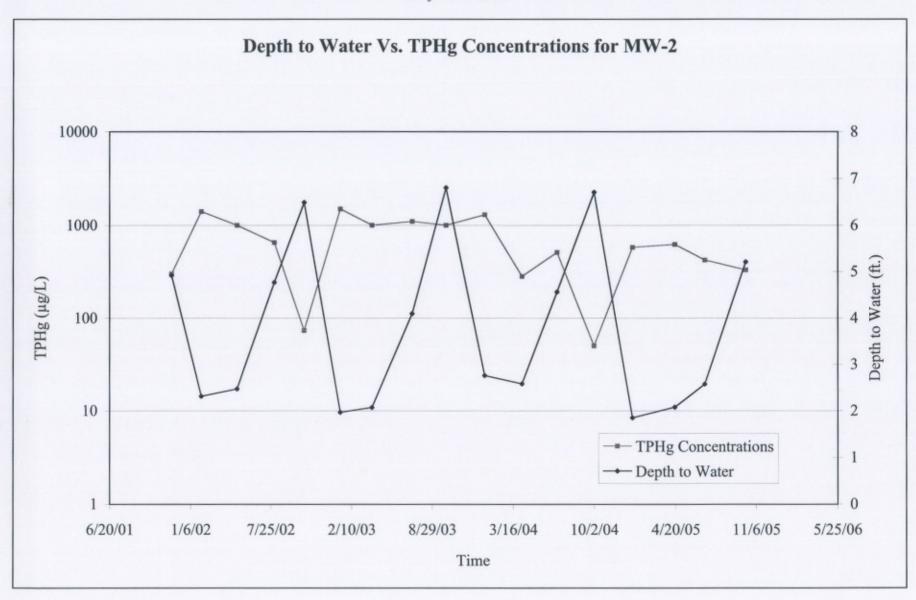


Chart 5 Indianola Market 7769 Myrtle Avenue Eureka, California Project No. NC-18

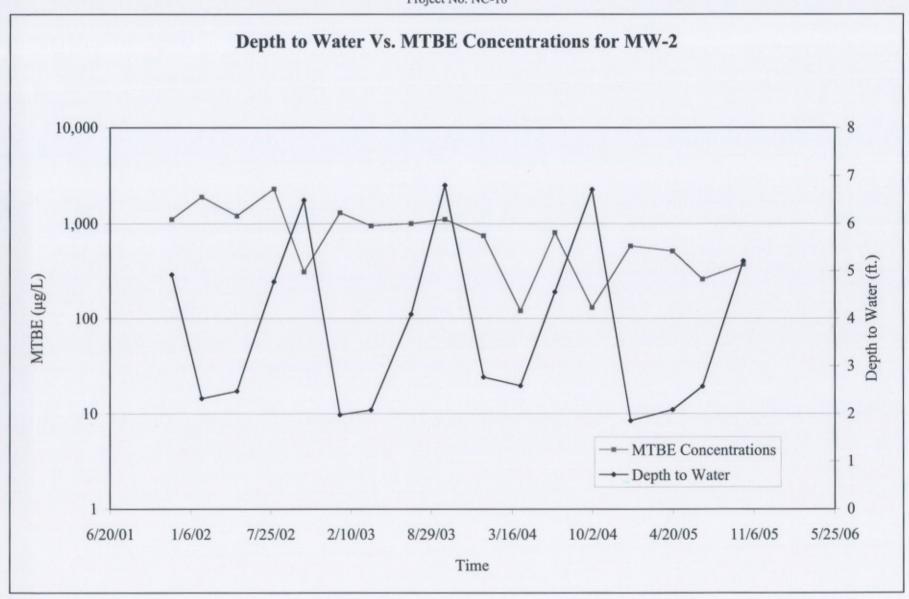


Chart 6 Indianola Market 7769 Myrtle Avenue Eureka, California Project No. NC-18

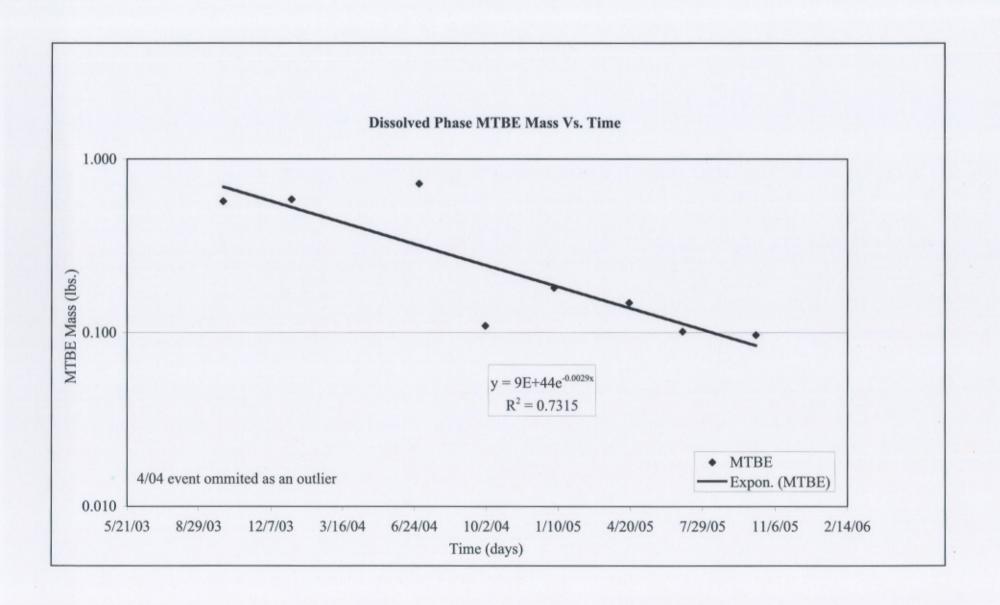
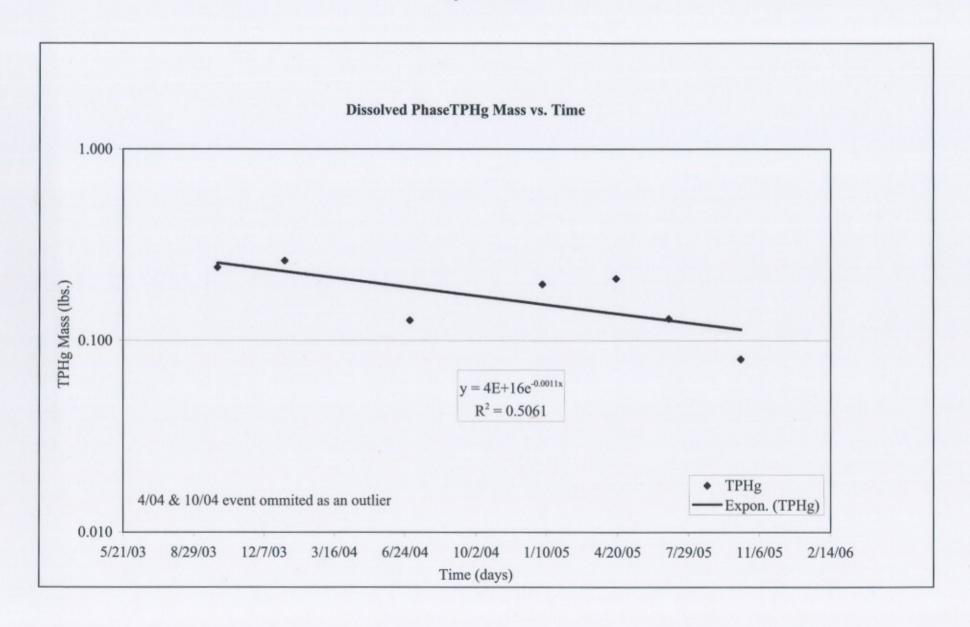



Chart 7 Indianola Market 7769 Myrtle Avenue Eureka, California Project No. NC-18

Calculation of Residual Dissolved-Phase Contaminant Mass (Fourth Quarter 2003)

Indianola Market. Eureka, CA

Residual TPHg (zone	1)	TPHg concentrations	1,000µg/	L or greater
---------------------	----	---------------------	----------	--------------

TPHg mean (mg/L)	A (ft2)	h (ft)	n	V (ft3)	TPHg mass (ft3-mg/L)	TPHg mass (lb)
1.100	386	15	0.35	2,027	2,229	0.139
				Total TPH	g (lb)	0.139
				Total TPH	g (gal)	0.02

Residual TPHg (zone 2) TPHg concentrations 100µg/L to 1,000µg/L

TPHg mean (mg/L)	A (ft2)	h (ft)	n	V (ft3)	TPHg mass (ft3-mg/L)	TPHg mass (lb)
0.320	980	15	0.35	5,145	1,646.4	0.103
				Total TPHs	g (lb)	0.103
				Total TPHs	g (gal)	0.017

Total TPHg Mass (lb)	0.2414	
Total TPHg Vol. (gal.)	0.0396	

A = Area

h = thickness

V = volume = A * h

n = soil porosity (assume 35%)

TPHg mass (ft3-mg/L)= V (ft3) * TPH conc. (mg/L)

TPHg mass (lb) = Mass (ft3-mg/L) * (28.31 L/ft3) * (0.000001 kg/mg) * (2.2 lb/kg)

Calculation of Residual Dissolved-Phase Contaminant Mass (Fourth Quarter 2003) Indianola Market. Eureka, CA

TPHg mean	A	h	n	V	TPHg mass	TPHg mass
esidual MTBE (zone 1) MTBE	concentration	s 1,000µg/	L or grea	iter		
MTBE mean	A	h	n	V	MTBE mass	MTBE mass
(mg/L)	(ft2)	(ft)		(ft3)	(ft3-mg/L)	(lb)
1.000	724	15	0.35	3,801	3,801	0.237
				Total MTB		0.237
				Total MTB	E (gal)	0.04
oridual MTDF (rone 2) MTDF		. 100ug/I	to 1 000	ma/I		
esidual MTBE (zone 2) MTBE				μg/L V	MTDE mass	MTDE mass
MTBE mean	A (ft2)	h (A)	n		MTBE mass	MTBE mass
(mg/L)	(112)	(ft)		(ft3)	(ft3-mg/L)	(lb)
0.320	2,908	15	0.35	15,267	4,885.4	0.30427
				Total MTB		0.30427
				Total MTB	E (gal)	0.0499
11 11 MEDE (2) MEDE		10/T 4	- 100	ď		
esidual MTBE (zone 3) MTBE		4 40			MTDE	MTDE
MTBE mean	A	h	n	V (02)	MTBE mass	MTBE mass
(mg/L)	(ft2)	(ft)		(ft3)	(ft3-mg/L)	(lb)
0.032	2,682	15	0.35	14,081	450.6	0.02806
				Total MTB		0.02806
				Total MTB	E (gal)	0.0046
esidual MTBE (zone 1) MTBE onc. (mg/L)	concentration: A (ft2)	s 1 μg/L to h (ft)	10μg/L n	V (ft3)	MTBE mass (ft3-mg/L)	MTBE mass
0.00320	3,625	10	0.35	12,688	41	0.0025
0.00320	5,025	10	0.00	Total MTB		0.0025
				Total MTE		0.0004
					BE Mass (lb)	0.5716
= Area				Total MT	BE Vol. (gal.)	0.0937
= thickness ' = volume = A * h = soil porosity (assume 35%) ITBE mass (ft3-mg/L)= V (ft3) *1 ITBE mass (lb) = Mass (ft3-mg/L)	MTBE conc. (r) * (28.31 L/ft.) / density of ga	3) * (0.000			rg)	

Calculation of Residual Dissolved-Phase Contaminant Mass (First Quarter 2004)

Indianola Market. Eureka, CA

Residual TPHg (zone	1) TPHg concentrations	1,000µg/L or greater
---------------------	------------------------	----------------------

TPHg mean (mg/L)	A (ft2)	h (ft)	n	V (ft3)	TPHg mass (ft3-mg/L)	TPHg mass (lb)
1.300	386	15	0.35	2,027	2,634	0.164
				Total TPH	g (lb)	0.164
				Total TPH	g (gal)	0.03

Residual TPHg (zone 2) TPHg concentrations 100µg/L to 1,000µg/L

TPHg mean (mg/L)	A (ft2)	h (ft)	n	V (ft3)	TPHg mass (ft3-mg/L)	TPHg mass (lb)
0.320	930	15	0.35	4,883	1,562.4	0.097
				Total TPH	g (lb)	0.097
				Total TPH	g (gal)	0.016

Total TPHg Mass (lb) 0.2614
Total TPHg Vol. (gal.) 0.0429

A = Area

h = thickness

V = volume = A * h

n = soil porosity (assume 35%)

TPHg mass (ft3-mg/L)= V (ft3) * TPH conc. (mg/L)

TPHg mass (lb) = Mass (ft3-mg/L) * (28.31 L/ft3) * (0.000001 kg/mg) * (2.2 lb/kg)

Calculation of Residual Dissolved-Phase Contaminant Mass (First Quarter 2004) Indianola Market. Eureka, CA

Residual MTBE (zone 1) MTBE concentrations 100µg/L or greater

MTBE mean (mg/L)	A (ft2)	h (ft)	n	V (ft3)	MTBE mass (ft3-mg/L)	MTBE mass (lb)
0.740	2,316	15	0.35	12,159	8,998	0.560
				Total MTB	E (lb)	0.560
				Total MTB	E (gal)	0.09

Residual MTBE (zone 2) MTBE concentrations 10 µg/L to 100 µg/L

MTBE mean (mg/L)	A (ft2)	h (ft)	n	V (ft3)	MTBE mass (ft3-mg/L)	MTBE mass (lb)
0.032	2,323	15	0.35	12,196	390.3	0.02431
				Total MTB	E (lb)	0.02431
				Total MTB	E (gal)	0.0040

Residual MTBE (zone 3) MTBE concentrations 1 µg/L to 10 µg/L

MTBE mean (mg/L)	A (ft2)	h (ft)	n	V (ft3)	MTBE mass (ft3-mg/L)	MTBE mass (lb)	
0.001	3,483	15	0.35	18,286	18.3	0.00114	
				Total MTB	E (lb)	0.00114	
				Total MTB	E (gal)	0.0002	

Total MTBE Mass (lb)	0.5858	
Total MTBE Vol. (gal.)	0.0960	

A = Area

h = thickness

V = volume = A * h

n = soil porosity (assume 35%)

MTBE mass (ft3-mg/L)= V (ft3) *MTBE conc. (mg/L)

MTBE mass (lb) = Mass (ft3-mg/L) * (28.31 L/ft3) * (0.000001 kg/mg) * (2.2 lb/kg)

Calculation of Residual Dissolved-Phase Contaminant Mass (Second Quarter 2004) Indianola Market. Eureka, CA

Residual TPHg (zone 2) TPHg concentrations 100μg/L to 1,000μg/L

TPHg mean (mg/L)	A (ft2)	h (ft)	n	V (ft3)	TPHg mass (ft3-mg/L)	TPHg mass (lb)
0.280	584	15	0.35	3,066	858.5	0.053
				Total TPH	g (lb)	0.053
				Total TPH	g (gal)	0.009
				Total TPH	Ig Mass (lb)	0.0535
				Total TPH	g Vol. (gal.)	0.0088

A = Area

h = thickness

V = volume = A * h

n = soil porosity (assume 35%)

TPHg mass (ft3-mg/L)= V (ft3) * TPH conc. (mg/L)
TPHg mass (lb) = Mass (ft3-mg/L) * (28.31 L/ft3) * (0.000001 kg/mg) * (2.2 lb/kg)
TPHg vol (gal) = TPHg mass (lb) / density of gasoline (assume 6.1 lb/gal.)

Residual MTBE (zone 1) MTBE concentrations 100µg/L or greater

MTBE mean (mg/L)	A (ft2)	h (ft)	n	V (ft3)	MTBE mass (ft3-mg/L)	MTBE mass (lb)
0.120	1,082	15	0.35	5,681	682	0.042
				Total MTE	BE (lb)	0.042
				Total MTI	BE (gal)	0.01

Calculation of Residual Dissolved-Phase Contaminant Mass (Second Quarter 2004) Indianola Market. Eureka, CA

Residual MTBE (zone 2) MTBE	concentrations	10 μg/L	to 100 μg/L
MTRE mean	Λ	h	n

MTBE mean (mg/L)	A (ft2)	h (ft)	n	V (ft3)	MTBE mass (ft3-mg/L)	MTBE mass (lb)
0.032	2,696	15	0.35	14,154	452.9	0.02821
				Total MTE	BE (lb)	0.02821
				Total MTE	BE (gal)	0.0046

Residual MTBE (zone 3) MTBE concentrations 1 µg/L to 10 µg/L

MTBE mean (mg/L)	A (ft2)	h (ft)	n	V (ft3)	MTBE mass (ft3-mg/L)	MTBE mass (lb)
0.003	2,683	15	0.35	14,086	45.1	0.00281
				Total MTB	BE (lb)	0.00281
				Total MTB	BE (gal)	0.0005

Total MTBE Mass (lb)	0.0735	
Total MTBE Vol. (gal.)	0.0120	

A = Area

h = thickness

V = volume = A * h

n = soil porosity (assume 35%)

MTBE mass (ft3-mg/L) = V (ft3) *MTBE conc. (mg/L) MTBE mass (lb) = Mass (ft3-mg/L) * (28.31 L/ft3) * (0.000001 kg/mg) * (2.2 lb/kg) MTBE vol (gal) = MTBE mass (lb) / density of gasoline (assume 6.1 lb/gal.)

Calculation of Residual Dissolved-Phase Contaminant Mass (Third Quarter 2004)

Indianola Market, Eureka, CA

Residual TPHg (zone 2) TPHg concentrations 100μg/L to 1,000μg/L

TPHg mean (mg/L)	A (ft2)	h (ft)	n	V (ft3)	TPHg mass (ft3-mg/L)	TPHg mass (lb)
0.510	764	15	0.35	4,011	2,045.6	0.127
				Total TPH	g (lb)	0.127
				Total TPH	g (gal)	0.021

Total TPHg Mass (lb) 0.1274
Total TPHg Vol. (gal.) 0.0209

A = Area

h = thickness

V = volume = A * h

n = soil porosity (assume 35%)

TPHg mass (ft3-mg/L)= V (ft3) * TPH conc. (mg/L)

TPHg mass (lb) = Mass (ft3-mg/L) * (28.31 L/ft3) * (0.000001 kg/mg) * (2.2 lb/kg)

TPHg vol (gal) = TPHg mass (lb) / density of gasoline (assume 6.1 lb/gal.)

Residual MTBE (zone 1) MTBE concentrations 100µg/L or greater

MTBE mean (mg/L)	A (ft2)	h (ft)	n	V (ft3)	MTBE mass (ft3-mg/L)	MTBE mass (lb)	
0.800	2,562	15	0.35	13,451	10,760	0.670	
				Total MTE	BE (lb)	0.670	
				Total MTE	BE (gal)	0.11	

Calculation of Residual Dissolved-Phase Contaminant Mass (Third Quarter 2004) Indianola Market, Eureka, CA

Residual TPHg (zone 2) TPHg concentrations 100µg/L to 1,000µg/L

Residual MTBE (zone 2) MTBE concentrations 10 µg/L to	to 100 ug	ug/L to	concentrations 10	MTBE	(zone 2)	dual MTBE	Residua
---	-----------	---------	-------------------	------	----------	-----------	---------

MTBE mean (mg/L)	A (ft2)	h (ft)	n	V (ft3)	MTBE mass (ft3-mg/L)	MTBE mass (lb)	
0.032	4,500	15	0.35	23,625	756.0	0.04709	
				Total MTE	BE (lb)	0.04709	
				Total MTE	BE (gal)	0.0077	

Residual MTBE (zone 3) MTBE concentrations 1 µg/L to 10 µg/L

Residual IV	MTBE mean (mg/L)	A (ft2)	h (ft)	n n	V (ft3)	MTBE mass (ft3-mg/L)	MTBE mass (lb)	
	0.0032	4,129	15	0.35	21,677	69.4	0.00432	
					Total MTB	E (lb)	0.00432	
					Total MTB	E (gal)	0.0007	

Total MTBE Mass (lb)	0.7216	
Total MTBE Vol. (gal.)	0.1183	

A = Area

h = thickness

V = volume = A * h

n = soil porosity (assume 35%)

MTBE mass (ft3-mg/L)= V (ft3) *MTBE conc. (mg/L)

MTBE mass (lb) = Mass (ft3-mg/L) * (28.31 L/ft3) * (0.000001 kg/mg) * (2.2 lb/kg)

Calculation of Residual Dissolved-Phase Contaminant Mass (Fourth Quarter 2004) Indianola Market, Eureka, CA

MTBE mean	A	h	n	V	MTBE mass	MTBE mass
(mg/L)	(ft2)	(ft)		(ft3)	(ft3-mg/L)	(lb)
0.130	839	15	0.35	4,405	573	0.036
				Total MTE	BE (lb)	0.036
				Total MTE	BE (gal)	0.01
: dual MTDE (2) MTDE		10 wa/T	to 100	/T		
esidual MTBE (zone 2) MTBE MTBE mean (mg/L)	Concentration A (ft2)	h (ft)	to 100 μg n	V (ft3)	MTBE mass (ft3-mg/L)	MTBE mass
MTBE mean (mg/L)	A (ft2)	h (ft)	n	V (ft3)	(ft3-mg/L)	
MTBE mean	A	h		V (ft3) 9,539	(ft3-mg/L) 305.3	(lb) 0.01901
(mg/L)	A (ft2)	h (ft)	n	V (ft3)	(ft3-mg/L) 305.3 BE (lb)	(lb)
MTBE mean (mg/L) 0.032	A (ft2) 1,817	h (ft) 15	n 0.35	V (ft3) 9,539 Total MTE Total MTE	(ft3-mg/L) 305.3 BE (lb)	(lb) 0.01901 0.01901
MTBE mean (mg/L)	A (ft2) 1,817	h (ft) 15	n 0.35	V (ft3) 9,539 Total MTE Total MTE	(ft3-mg/L) 305.3 BE (lb)	(lb) 0.01901 0.01901

0.35

271,950

Total MTBE (lb)

Total MTBE (gal)

Total MTBE Mass (lb)	0.1089	
Total MTBE Vol. (gal.)	0.0178	

0.05420

0.05420 0.0089

870.2

A = Area h = thickness

V = volume = A * h

n = soil porosity (assume 35%)

MTBE mass (ft3-mg/L)= V (ft3) *MTBE conc. (mg/L)

0.0032

MTBE mass (lb) = Mass (ft3-mg/L) * (28.31 L/ft3) * (0.000001 kg/mg) * (2.2 lb/kg)

51,800

15

Calculation of Residual Dissolved-Phase Contaminant Mass (First Quarter 2005)

Indianola Market, Eureka, CA

Residual TPHg (zone 2) TPHg concentrations 100µg/L to 1,000µg/L

TPHg mean	A	h	n	V	TPHg mass	TPHg mass
(mg/L)	(ft2)	(ft)		(ft3)	(ft3-mg/L)	(lb)
0.580	1,040	15	0.35	5,460	3,166.8	0.197
				Total TPHg (I	b)	0.197
				Total TPHg (g	(al)	0.032

Total TPHg Mass (lb) 0.1972 Total TPHg Vol. (gal.) 0.0323

A = Area

h = thickness

V = volume = A * h

n = soil porosity (assume 35%)

TPHg mass (ft3-mg/L)= V (ft3) * TPH conc. (mg/L)

TPHg mass (lb) = Mass (ft3-mg/L) * (28.31 L/ft3) * (0.000001 kg/mg) * (2.2 lb/kg)

TPHg vol (gal) = TPHg mass (lb) / density of gasoline (assume 6.1 lb/gal.)

Residual MTBE (zone 1) MTBE concentrations 100µg/L or greater

MTBE mean	A	h	n	V	MTBE mass	MTBE mass
(mg/L)	(ft2)	(ft)		(ft3)	(ft3-mg/L)	(lb)
0.580	846	15	0.35	4,442	2,576	0.160
				Total MTBE	(lb)	0.160
				Total MTBE	(gal)	0.03

Calculation of Residual Dissolved-Phase Contaminant Mass (First Quarter 2005)

Indianola Market, Eureka, CA

Residual MTBE (zone 2) MTBE concentrations 1	10 μg/L to 100 μg/L
--	---------------------

	MTBE mean	A	h	n	V	MTBE mass	MTBE mass
	(mg/L)	(ft2)	(ft)		(ft3)	(ft3-mg/L)	(lb)
	0.032	1,426	15	0.35	7,487	239.6	0.01492
					Total MTBE (lb)	0.01492
					Total MTBE	(gal)	0.0024
Residual M	TBE (zone 3) MTBE	concentratio	ns 1 μg/L to 10	μg/L			
	MTBE mean	A	h	n	V	MTBE mass	MTBE mass
	(mg/L)	(ft2)	(ft)		(ft3)	(ft3-mg/L)	(lb)
	0.0032	5,269	15	0.35	27,662	88.5	0.00551

Total MTBE Mass (lb) Total MTBE Vol. (gal.)

Total MTBE (lb)

Total MTBE (gal)

0.1809 0.0297

0.00551

0.0009

A = Area

h = thickness

V = volume = A * h

n = soil porosity (assume 35%)

MTBE mass (ft3-mg/L)= V (ft3) *MTBE conc. (mg/L)

MTBE mass (lb) = Mass (ft3-mg/L) * (28.31 L/ft3) * (0.000001 kg/mg) * (2.2 lb/kg)

Calculation of Residual Dissolved-Phase Contaminant Mass (Second Quarter 2005)

Indianola Market, Eureka, CA

Residual TPHg (zone 2) TPHg concentrations 100µg/L to 1,000µg/L

TPHg mean (mg/L)	A (ft2)	h (ft)	n	V (ft3)	TPHg mass (ft3-mg/L)	TPHg mass (lb)
0.620	1,040	15	0.35	5,460	3,385.2	0.211
				Total TPHg (II	b)	0.211
				Total TPHg (g	al)	0.035

Total TPHg Mass (lb) 0.2108
Total TPHg Vol. (gal.) 0.0346

A = Area

h = thickness

V = volume = A * h

n = soil porosity (assume 35%)

TPHg mass (ft3-mg/L)= V (ft3) * TPH conc. (mg/L)

TPHg mass (lb) = Mass (ft3-mg/L) * (28.31 L/ft3) * (0.000001 kg/mg) * (2.2 lb/kg)

TPHg vol (gal) = TPHg mass (lb) / density of gasoline (assume 6.1 lb/gal.)

Residual MTBE (zone 1) MTBE concentrations 100µg/L or greater

MTBE mean	A	h	n	V	MTBE mass	MTBE mass
(mg/L)	(ft2)	(ft)		(ft3)	(ft3-mg/L)	(lb)
0.510	777	15	0.35	4,079	2,080	0.130
				Total MTBE (lb)		0.130
				Total MTBE	(gal)	0.02

Calculation of Residual Dissolved-Phase Contaminant Mass (Second Quarter 2005)

Indianola Market, Eureka, CA

Residual MTBE	(zone 2)	MTBE	concentrations	10 μg/L	to 100 µg/L
---------------	----------	------	----------------	---------	-------------

3,116

(mg/L)	A (ft2)	n (ft)	n	(ft3)	(ft3-mg/L)	(lb)
0.032	1,476	15	0.35	7,749	248.0	0.01544
				Total MTBE	(lb)	0.01544
				Total MTBE	(gal)	0.0025
				.,	MEDE	MEDE
MTBE mean		h	n			MTBE mass
(mg/L)	(ft2)	(ft)		(ft3)	(ft3-mg/L)	(lb)
	(mg/L) 0.032 TBE (zone 3) MTBE MTBE mean	(mg/L) (ft2) 0.032 1,476 TBE (zone 3) MTBE concentratio MTBE mean A	(mg/L) (ft2) (ft) 0.032 1,476 15 TBE (zone 3) MTBE concentrations 1 μg/L to 10 MTBE mean A h	(mg/L) (ft2) (ft) 0.032 1,476 15 0.35 TBE (zone 3) MTBE concentrations 1 μg/L to 10 μg/L MTBE mean A h n	(mg/L) (ft2) (ft) (ft3) 0.032 1,476 15 0.35 7,749 Total MTBE Total MTBE	(mg/L) (ft2) (ft) (ft3) (ft3-mg/L) 0.032 1,476 15 0.35 7,749 248.0 Total MTBE (lb) Total MTBE (gal) TBE (zone 3) MTBE concentrations 1 μg/L to 10 μg/L MTBE mean A h n V MTBE mass

15

0.35

16,359

Total MTBE (lb)

Total MTBE (gal)

Total MTBE Mass (lb)	0.1483		
Total MTBE Vol. (gal.)	0.0243		

52.3

0.00326

0.00326

0.0005

A = Area

h = thickness

V = volume = A * h

n = soil porosity (assume 35%)

MTBE mass (ft3-mg/L)= V (ft3) *MTBE conc. (mg/L)

0.0032

MTBE mass (lb) = Mass (ft3-mg/L) * (28.31 L/ft3) * (0.000001 kg/mg) * (2.2 lb/kg)

Calculation of Residual Dissolved-Phase Contaminant Mass (Third Quarter 2005)

Indianola Market, Eureka, CA

Residual TPHg (zone 2) TPHg concentrations 100µg/L to 1,000µg/L

TPHg mean	A	h	n	V	TPHg mass	TPHg mass
(mg/L)	(ft2)	(ft)		(ft3)	(ft3-mg/L)	(lb)
0.420	946	15	0.35	4,967	2,085.9	0.130
				Total TPHg (1	b)	0.130
				Total TPHg (g	(al)	0.021

Total TPHg Mass (lb) 0.1299
Total TPHg Vol. (gal.) 0.0213

A = Area

h = thickness

V = volume = A * h

n = soil porosity (assume 35%)

TPHg mass (ft3-mg/L)= V (ft3) * TPH conc. (mg/L)

TPHg mass (lb) = Mass (ft3-mg/L) * (28.31 L/ft3) * (0.000001 kg/mg) * (2.2 lb/kg)

TPHg vol (gal) = TPHg mass (lb) / density of gasoline (assume 6.1 lb/gal.)

Residual MTBE (zone 1) MTBE concentrations 100µg/L or greater

MTBE mean	A	h	n	V	MTBE mass	MTBE mass
(mg/L)	(ft2)	(ft)		(ft3)	(ft3-mg/L)	(lb)
0.260	921	15	0.35	4,835	1,257	0.078
				Total MTBE ((lb)	0.078
				Total MTBE	(gal)	0.01

Calculation of Residual Dissolved-Phase Contaminant Mass (Third Quarter 2005)

Indianola Market, Eureka, CA

Residual MTBE (zone 2) MTBE concentrations 10 µg/L to 100 µg/L

	MTBE mean (mg/L)	A (ft2)	h (ft)	n	(ft3)	MTBE mass (ft3-mg/L)	MTBE mass (lb)
	(mg/L)	(102)	(11)		(113)	(IO-IIIg/L)	(10)
	0.032	1,865	15	0.35	9,791	313.3	0.01951
					Total MTBE	(lb)	0.01951
					Total MTBE	(gal)	0.0032
Residual MT	BE (zone 3) MTBE	concentratio	ns 1 μg/L to 10	μg/L			
	MTBE mean	A	h	n	V	MTBE mass	MTBE mass
	(mg/L)	(ft2)	(ft)		(ft3)	(ft3-mg/L)	(lb)

0.35

15

Total MTBE (gal)	0.0005
The state of the s	

51.7

Total MTBE Mass (lb) Total MTBE Vol. (gal.)

16,154

Total MTBE (lb)

0.1010 0.0166

0.00322

0.00322

A = Area

h = thickness

V = volume = A * h

n = soil porosity (assume 35%)

MTBE mass (ft3-mg/L)= V (ft3) *MTBE conc. (mg/L)

0.0032

MTBE mass (lb) = Mass (ft3-mg/L) * (28.31 L/ft3) * (0.000001 kg/mg) * (2.2 lb/kg)

3,077

MTBE vol (gal) = MTBE mass (lb) / density of gasoline (assume 6.1 lb/gal.)

Calculation of Residual Dissolved-Phase Contaminant Mass (Fourth Quarter 2005)

Indianola Market, Eureka, CA

Residual TPHg (zone 2) TPHg concentrations 100µg/L to 1,000µg/L

TPHg mean (mg/L)	A (ft2)	h (ft)	n	V (ft3)	TPHg mass (ft3-mg/L)	TPHg mass (lb)
0.330	738	15	0.35	3,875	1,278.6	0.080
				Total TPHg (II	b)	0.080
				Total TPHg (g	(al)	0.013

Total TPHg Mass (lb) 0.0796
Total TPHg Vol. (gal.) 0.0131

A = Area

h = thickness

V = volume = A * h

n = soil porosity (assume 35%)

TPHg mass (ft3-mg/L)= V (ft3) * TPH conc. (mg/L)

TPHg mass (lb) = Mass (ft3-mg/L) * (28.31 L/ft3) * (0.000001 kg/mg) * (2.2 lb/kg)

TPHg vol (gal) = TPHg mass (lb) / density of gasoline (assume 6.1 lb/gal.)

Residual MTBE (zone 1) MTBE concentrations 100µg/L or greater

(Zone I) MIIDE	concentratio	ing roomer in a	Brenter			
MTBE mean	A	h	n	V	MTBE mass	MTBE mass
(mg/L)	(ft2)	(ft)		(ft3)	(ft3-mg/L)	(lb)
0.370	489	15	0.35	2,567	950	0.059
				Total MTBE	(lb)	0.059
				Total MTBE	(gal)	0.01

Calculation of Residual Dissolved-Phase Contaminant Mass (Fourth Quarter 2005)

Indianola Market, Eureka, CA

Residual MTBE (zone 2) MTBE concentrations 10 µg/L to 100 µg/L

7,610

	MTBE mean (mg/L)	A (ft2)	h (ft)	n	(ft3)	MTBE mass (ft3-mg/L)	MTBE mass (lb)
	0.032	2,796	15	0.35	14,679	469.7	0.02926
					Total MTBE	(lb)	0.02926
					Total MTBE	(gal)	0.0048
Residual M	ITBE (zone 3) MTBE	C concentratio	ns 1 μg/L to 10	μg/L			
	MTBE mean	A	h	n	V	MTBE mass	MTBE mass
	(mg/L)	(ft2)	(ft)		(ft3)	(ft3-mg/L)	(lb)

0.35

15

Total	MTBE	Mass (lb)
Total	MTBE	Vol. (gal.)

127.8

39,953

Total MTBE (lb)

Total MTBE (gal)

0.0964
0.0158

0.00796

0.00796

0.0013

A = Area

h = thickness

V = volume = A * h

n = soil porosity (assume 35%)

MTBE mass (ft3-mg/L)= V (ft3) *MTBE conc. (mg/L)

0.0032

MTBE mass (lb) = Mass (ft3-mg/L) * (28.31 L/ft3) * (0.000001 kg/mg) * (2.2 lb/kg)

MTBE vol (gal) = MTBE mass (lb) / density of gasoline (assume 6.1 lb/gal.)

GAGING DATA/PURGE CALCULATIONS

Job No.:	NC-18	Location:	7769	Myrtle	Ave.	Date: /0/	11/05	Tech(s): JL
WELL NO.	DIA. (in.)	DTB (ft.)	DTW (ft.)	ST (ft.)	CV (gal.)	PV (gal.)	SPH (ft.)	NOTES
MW-1	2"	16.59		11.08		5.31	0	
MW-2	1	18,07	5.21	12.86		6.15	1	
MW-3		17.71	3.88	13.83	2.21	6.63		
MW-4		16.94	3,69	13.25	2,12	6.36		
MW-5	9	19.76	5.72	14.04	2.24	6.72	V	
						*		

Explanation:

DIA. = Well Diameter

DTB = Depth to Bottom

DTW = Depth to Water

ST = Saturated Thickness (DTB-DTW)

CV = Casing Volume (ST x cf)

PV = Purge Volume (standard 3 x CV, well development 10 x CV)

SPH = Thickness of Separate Phase Hydrocarbons

Conversion Factors (cf):

2 in. dia. well cf = 0.16 gal./ft.

4 in. dia. well cf = 0.65 gal./ft.

6 in. dia. well cf = 1.44 gal./ft.

Job No.: N(-18	Location:	1769 M	intle Av	L, Date: /	18/11/15 Tech: JL
WELL No.	TIME	VOLUME (gal.)	COND. (mS/cm)	TEMP. (deg. F.)	рН	
MW-1						Sample for:
Calc. purge	10:40	0.25	407	65.2	5.02	TPHg TPHd 8260
volume	10:45	2.75	436	64.7	5,01	BYEX MYBE Metals
5,31	10:50	5.35	372	64.6	5.08	Purging Method:
						PVC bailer / Pump
	COMMENT	S: color, turb	oidity, recharg			Sampling Method:
	clear	mod.	I mod	Shee	n odor	Dedicated / Disposable bailer
WELL No.	TIME	VOLUME (gal.)	COND. (mS/cm)	TEMP. (deg. F.)	pH	Sample at: 10:55
MW-2						Sample for:
Calc. purge	11:00	0.25	302	64.9	5.67	трид три 8260
volume	11:05	3,00	349	64.2	5,74.	BYEX MABE Metals
6,15	11:10	6.15	333	63,7	5,81	Purging Method:
						PVC bailer / Pump
	COMMENT	S: color, turb	oidity, recharg	ge, sheen		Sampling Method:
	Clear	mod.	mod, s	no heen	HC	Dedicated / Disposable bailer
WELL No.	TIME	VOLUME (gal.)	COND. (mS/cm)	TEMP. (deg. F.)	pH	Sample at: 11:15
MW-3						Sample for:
Calc. purge	11:20	0.25	199	65.7	8,13	тенд трим 8260
volume	11:25	3.25	198	65.2	4.98	BYEX MYBE Metals
6,63	11:30	6.65	193	64.6	5,07	Purging Method:
						PVC bailer / Pump
	COMMENT	S: color, turb	bidity, rechar	-		Sampling Method:
	Clear	I mod.	mod.	Sheen	1 hoor	Dedicated / Disposable bailer
						Sample at: 11: 35

Job No.: /	10-18	Location:	7769 N	lyrtle A	Ve, Date: 10	1/11/05 Tech: JL
WELL No.	TIME	VOLUME (gal.)	COND. (mS/cm)	TEMP. (deg. F.)	pH	
MW-4						Sample for:
Calc. purge	11:40	0.25	234	65.9	4.68	
volume	11:45	3,25	288	65.9	4,70	BYEX MYBE Metals
6,36	11:50	6.40	301	65.7	4.72	Purging Method:
	,					PVC bailer / Pump
	COMMENT	S: color, turb	oidity, recharg	ge, sheen		Sampling Method:
	Clear	[mod.]	modif	sheen!	idar	Dedicated / Disposable bailer
WELL No.	TIME	VOLUME (gal.)	COND. (mS/cm)	TEMP. (deg. F.)	pH	Sample at: 11:55
MW-5						Sample for:
Calc. purge	12:05	0.25	235	59,0	4,40	TPMg TPHd 8260
volume	12:10	3.50	249	57.7	5.01.	BTEX MTBE Metals
6.72	12:15	6.75	245	57.4	5, 14	Purging Method:
						PVC bailer / Pump
	,	S: color, turb	, ,)	ge, sheen	1 ho	Sampling Method:
	clear/	modif	modif	sheen	odor	Dedicated / Disposable bailer Sample at:
WELL No.	TIME	VOLUME (gal.)	COND. (mS/cm)	TEMP. (deg. F.)	рН	12:20
						Sample for:
Calc. purge						TPHg TPHd 8260
volume						BTEX MTBE Metals
						Purging Method:
						PVC bailer / Pump
	COMMENT	'S: color, turb	oidity, rechar	ge, sheen		Sampling Method: Dedicated / Disposable bailer
						Sample at:

Date: 10/19/2005

Andrew LoCicero Blue Rock Environmental, Inc. 535 3rd Street, Suite 100 Eureka, CA 95501

Subject : 6 Water Samples Project Name : Indianola Market Project Number : NC-18

Dear Mr. LoCicero,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed.

Kiff Analytical is certified by the State of California (# 2236). If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Subject:

6 Water Samples Project Name: Indianola Market

Project Number: NC-18

Report Number: 46422

Date: 10/19/2005

Case Narrative

The Method Reporting Limit for TPH as Diesel is increased due to interference from Gasoline-Range Hydrocarbons for sample MW-2.

Project Name: Indianola Market

Project Number: NC-18

Report Number: 46422 Date: 10/19/2005

Lab Number: 46422-01

Sample Date :10/11/2005

Sample: MW-1

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	10/12/2005
Toluene	< 0.50 < 0.50 < 0.50	0.50	ug/L	EPA 8260B	10/12/2005
Ethylbenzene		0.50 0.50 0.50	ug/L	EPA 8260B	10/12/2005
Total Xylenes			ug/L	EPA 8260B	10/12/2005
Methyl-t-butyl ether (MTBE)	0.71		ug/L	EPA 8260B	10/12/2005
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	10/12/2005
Toluene - d8 (Surr)	106		% Recovery	EPA 8260B	10/12/2005
4-Bromofluorobenzene (Surr)	104		% Recovery	EPA 8260B	10/12/2005

Matrix: Water

Sample: MW-2 Matrix: Water Lab Number: 46422-02

Sample Date :10/11/2005

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	10/12/2005
Toluene	< 0.50	0.50	ug/L	EPA 8260B	10/12/2005
Ethylbenzene	< 0.50	0.50 0.50	ug/L	EPA 8260B	10/12/2005
Total Xylenes	< 0.50		ug/L	EPA 8260B	10/12/2005
Methyl-t-butyl ether (MTBE)	370	0.50	ug/L	EPA 8260B	10/12/2005
TPH as Gasoline	330	50	ug/L	EPA 8260B	10/12/2005
Toluene - d8 (Surr)	108		% Recovery	EPA 8260B	10/12/2005
4-Bromofluorobenzene (Surr)	107		% Recovery	EPA 8260B	10/12/2005
TPH as Diesel (Silica Gel)	< 80	80	ug/L	M EPA 8015	10/14/2005
Octacosane (Diesel Surrogate)	117		% Recovery	M EPA 8015	10/14/2005

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

e Kiff

Project Name: Indianola Market

Project Number: NC-18

Matrix : Water

Lab Number: 46422-03

Report Number: 46422 Date: 10/19/2005

Sample Date :10/11/2005

Sample: MW-3

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed	
Benzene	< 0.50	0.50	ug/L	EPA 8260B	10/13/2005	
Toluene	< 0.50	0.50	ug/L	EPA 8260B	10/13/2005	
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	10/13/2005	
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	10/13/2005	
Methyl-t-butyl ether (MTBE)	18	0.50	ug/L	EPA 8260B	10/13/2005	
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	10/13/2005	
Toluene - d8 (Surr)	107		% Recovery	EPA 8260B	10/13/2005	
4-Bromofluorobenzene (Surr)	106		% Recovery	EPA 8260B	10/13/2005	

Sample: MW-4

Matrix: Water

Lab Number: 46422-04

Sample Date :10/11/2005

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed	
Benzene	< 0.50	0.50	ug/L	EPA 8260B	10/13/2005	
Toluene	< 0.50	0.50	ug/L	EPA 8260B	10/13/2005	
Ethylbenzene	< 0.50 < 0.50	0.50	ug/L	EPA 8260B	10/13/2005	
Total Xylenes		0.50	ug/L	EPA 8260B	10/13/2005	
Methyl-t-butyl ether (MTBE)	3.4	0.50	ug/L	EPA 8260B	10/13/2005	
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	10/13/2005	
Toluene - d8 (Surr)	107		% Recovery	EPA 8260B	10/13/2005	
4-Bromofluorobenzene (Surr)	106		% Recovery	EPA 8260B	10/13/2005	

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

el Kiff

Project Name: Indianola Market

Project Number: NC-18

Sample: MW-5 Matrix: Water

latrix : Water Lab Number : 46422-05

Report Number: 46422 Date: 10/19/2005

Sample Date :10/11/2005 Method Analysis Method Measured Reporting Date Parameter Value Limit Units Analyzed < 0.50 0.50 **EPA 8260B** Benzene ug/L 10/13/2005 Toluene < 0.50 0.50 ug/L EPA 8260B 10/13/2005 < 0.50 0.50 EPA 8260B Ethylbenzene ug/L 10/13/2005 0.50 < 0.50 ug/L EPA 8260B 10/13/2005 **Total Xylenes** 0.50 **EPA 8260B** Methyl-t-butyl ether (MTBE) 5.6 ug/L 10/13/2005 50 TPH as Gasoline < 50 ug/L EPA 8260B 10/13/2005 Toluene - d8 (Surr) 106 % Recovery EPA 8260B 10/13/2005 4-Bromofluorobenzene (Surr) 106 % Recovery EPA 8260B 10/13/2005 < 50 50 M EPA 8015 TPH as Diesel (Silica Gel) ug/L 10/14/2005 Octacosane (Diesel Surrogate) 100 % Recovery M EPA 8015 10/14/2005

Sample: DOM-1 Matrix: Water Lab Number: 46422-06

Sample Date :10/11/2005

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed	
Benzene	< 0.50	0.50	ug/L	EPA 8260B	10/13/2005	
Toluene	< 0.50	0.50	ug/L	EPA 8260B	10/13/2005	
Ethylbenzene	< 0.50	0.50 0.50	ug/L	EPA 8260B	10/13/2005	
Total Xylenes	< 0.50		ug/L	EPA 8260B	10/13/2005	
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	10/13/2005	
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	10/13/2005	
Toluene - d8 (Surr)	107		% Recovery	EPA 8260B	10/13/2005	
4-Bromofluorobenzene (Surr)	104		% Recovery	EPA 8260B	10/13/2005	

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

del Kiff

Date: 10/19/2005

QC Report : Method Blank Data Project Name: Indianola Market

Project Number: NC-18

Parameter	Measured Value	Method Reportin Limit	g Units	Analysis Method	Date Analyzed
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	10/14/2005
Octacosane (Diesel Surrogate)	113		%	M EPA 8015	10/14/2005
Benzene	< 0.50	0.50	ug/L	EPA 8260B	10/12/2005
Toluene	< 0.50	0.50	ug/L	EPA 8260B	10/12/2005
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	10/12/2005
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	10/12/2005
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	10/12/2005
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	10/12/2005
Toluene - d8 (Surr)	107		%	EPA 8260B	10/12/2005
4-Bromofluorobenzene (Surr)	104		%	EPA 8260B	10/12/2005

Method Measured Reporting
Value Limit Units Analysis Method Date Analyzed Parameter

Approved By: Joel Kiff

KIFF ANALYTICAL, LLC

Date: 10/19/2005

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Name: Indianola Market

Project Number: NC-18

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spiked Sample Value	Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.	Duplicat Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
TPH as Diesel	Blank	<50	1000	1000	849	839	ug/L	M EPA 8015	10/14/05	84.9	83.9	1.24	70-130	25
Benzene	46420-04	<0.50	40.0	40.0	39.6	38.7	ug/L	EPA 8260B	10/12/05	98.9	96.7	2.20	70-130	25
Toluene	46420-04	< 0.50	40.0	40.0	43.2	42.6	ug/L	EPA 8260B	10/12/05	108	106	1.42	70-130	25
Tert-Butanol	46420-04	<5.0	200	200	198	199	ug/L	EPA 8260B	10/12/05	99.1	99.6	0.510	70-130	25
Methyl-t-Butyl Eth	er 46420-04	< 0.50	40.0	40.0	33.4	33.3	ug/L	EPA 8260B	10/12/05	83.5	83.2	0.411	70-130	25

Approved By: Joel Kiff

KIFF ANALYTICAL, LLC

Date: 10/19/2005

QC Report : Laboratory Control Sample (LCS)

Project Name: Indianola Market

Project Number: NC-18

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit	
Benzene	40.0	ug/L	EPA 8260B	10/12/05	100	70-130	
Toluene	40.0	ug/L	EPA 8260B	10/12/05	111	70-130	
Tert-Butanol	200	ug/L	EPA 8260B	10/12/05	101	70-130	
Methyl-t-Butyl Ether	40.0	ug/L	EPA 8260B	10/12/05	85.2	70-130	

Approved By:

Joe Kiff

KIFF ANALYTICAL, LLC

KIFF (2)	Davis, CA 956 Lab: 530.29 Fax: 530.29	7.4800 7.4802			RG # / La	b No.	_	164	22			-			Page		of
Project Contact (Hardcopy or PDF To): Andrew La Cicero	Calif	omia EDF	Report?	X(Yes □ N	0		Ch	ain-c	f-Cus	tody	Reco	ord a	nd A	Analy	sis Red	quest	
Company / Address: Blue Rock Env. 535 3rd st. ste. 100 Eurek Phone #: Fax #:	Inc. Sam	pling Com	pany Log Code:			9	П	_	Ar	alysis	Req	uest	1	_		T/	
(107) 441-1934 (707)44	1-1949 EDE	Dolivershi	60230 e To (Email Add	rosol:		level © 5.0 ppb			A 8260B)		A 8260B) Drinking Water)	וכת מפ	3			12	hr
Project Name:	Sam	pler Signal	D bluerod	KENV. CO	m	22			() EDB-EPA	3260B)			15M)			24	
Endianda Market Project Address: Sam		Hamu Containe	e dinder	man	fatrix	6 9		SedB)	8260B)	(EPA	List (B	9015N	(EPA 8015M)	6		48	or Lat
7769 Myrtle Ave.	Dilling T	Containe	Frese	Ivalive Iv	Iduix	260B) pe	82608)	(EPA 8:	EPA 8	arbons	Organics Full List (EF Organics (EPA 524.2		1 6	(EPA 6010)			-
Euroka, CA	ni VOA	900	Lar O ₃	9 5		E (EPA 8260B)	BTEX (EPA 82	TPH Gas (EPA 8260B) 5 Oxygenates (EPA 8260B)	7 Oxygenates (EPA 8260B Lead Scav.(1,2 DCA & 1,2	Volatile Halocarbons (EPA	Volatile Organics Full List Volatile Organics (EPA 52	as Diesel	~ 1	W.E.T. Lead		72	hr
Sample Designation Date	Time 4	Poly Glass	Tedian HCI HNO ₃	Water None	Air S	MTBE (BTE	E S	7 Ox	Vola	Volatile Volatile	TPH as	H :	W.E		11	
MW-1 10/11/05	10:55 3		X			L X	X	XI_		Ц		Ц				>	01
MW-2	11:15 6		I				11	1		Ц		X					07
MW-3	11:35 3						Ш										03
MW-4	11:55 3																04
MW-5	12:206						Ш			П		X					05
Dom-I V	12:45 3		1	1		V	*	V		H	+	H	-			1	1 06
						\parallel	\parallel				1		1	+		1	1
					+	+	H	+	+	H	+	Н	+	+		+	+
Fame Linderman	10 11 0S		Received by:	dEX			Rema	arks:									
Relinquished by:	Date	Time	Received by:														
Relinguished by:	Date	Time	Received by Labor	ratoru			Bill to			F1 -	h 11a	0-1	0		Name to 1		
Total Equipolitical by.			a residence de la companya del companya de la companya del companya de la company)	eiff Ambyti	. 1	Ter	np °C	Initia		b Use	Only:	_	mple F	Receipt	D# C~	olant Present
	101205	1047	Dason NX	break	Analyti	21	2.		JNY		1017			92	IR-1	_	s)/ No

Rev: 051805